
A New Parallel Algorithm for Monte Carlo Simulations of 2D Ising, Potts and XY
Models

Tian-Shen He1, ∗ and Yan Chen1, 2, †

1Department of Physics, State Key Laboratory of Surface Physics and
Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China

2Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
(Dated: 29 May 2021)

The Swendsen–Wang (SW) multi-cluster spin flip algorithm is closely related to connected com-
ponent labeling and analysis (CCL & CCA) algorithms in computer vision. Recently, a new parallel
algorithm: Hardware Accelerated 4-connected CCL & CCA (HA4) was proposed. It utilizes Graph-
ical Processing Units (GPUs) and the Common Unified Device Architecture (CUDA) to conduct
CCL & CCA efficiently, and surpasses all previous CCL & CCA algorithms. However, the HA4
identifies only and all adjacent set pixels to be in one component, whereas in the SW algorithm
bonds are generated between neighbor spin pairs with a probability. We present a new algorithm
that combines the HA4 with the SW, with application to Monte Carlo simulations of 2D Ising and
Potts models. The algorithm naturally absorbs periodic boundary conditions (PBC) into consider-
ation. In simulating a 32 × 32 square lattice Ising model with a NVIDIA RTX 2060 graphic card,
compared with a currently prevalent CUDA C++ package based on Komura equivalence algorithm,
ours is approximately 2.3 times faster.

CONTENTS

I. Introduction 1

II. Swendsen–Wang cluster algorithm, Connected
component labeling and analysis 2

III. Hardware accelerated 4-connected Connected
component analysis algorithm 3

IV. A new parallel multi-cluster flip algorithm 3
IV.1. Limitations of the HA4 3
IV.2. Modified distance operators 3
IV.3. New merging strategy 4
IV.4. PBC on arbitary size lattices 6
IV.5. Spin flip as relabeling and iterative CCA 6

V. Experimental evaluation 6

VI. Summary and Outlook 6

Author Contributions 6

Code Availability 6

References 7

I. INTRODUCTION

In computational physics, Monte Carlo methods form
the largest and most important class of numerical meth-
ods used for solving statistical physics problems [1]. The
Metropolis algorithm [2] with a single spin flip has been

∗ e-mail: jerryhts@gmail.com
† e-mail: yanchen99@fudan.edu.cn

a success as a standard method of simulation of many-
particle systems. However, as we approach the critical
temperature, the single-spin-flip algorithm often suffers
from the problem of slow dynamics or the critical slow-
ing down; that is, the combination of large critical fluc-
tuations and long correlation time makes the errors on
measured quantities grow enormously. To overcome this
difficulty, multi-cluster [3] and single-cluster [4] spin flip
algorithms based on the Fortuin and Kasteleyn [5] repre-
sentation have been proposed. By flipping similarly ori-
ented spins in their entirety all at a time, the undesirable
effects mentioned above are greatly reduced.

The advance in computer technology promotes the
development of computational physics. Parallel com-
putation utilizing graphics processing units (GPUs) is
extensively applied to reduce processing times in sci-
entific computations, computer science and finance [6].
Using the common unified device architecture (CUDA)
released by NVIDIA [7], it is now easy to implement
parallel algorithms on GPUs using standard C or C++
language with CUDA specific extension. Furthernore,
pseudo-random number generators (PRNGs) have devel-
oped enormously [8], and it’s no longer troublesome to
generate random numbers in Monte Carlo procedures on
GPUs.

Among all cluster flip algorithms, the Swend-
sen–Wang [3](SW) multi-cluster spin flip algorithm is
considered to be the best candidate for parallel trans-
formation [9][10], as it is intrinsically a variant of
connected component labeling and analysis (CCL &
CCA), which is a central algorithm in computer vi-
sion. Parallel algorithms for CCL & CCA have un-
dergone many updates [11], the most recent ones being
the Komura equivalence [12][13], the Cabaret distance-
less label propagation[14], the Playne equivalence[15],
and the Hardware Accelerated 4-connected CCL & CCA
(HA4) [16][17]. The HA4 is so far the fastest, but its
unique structure makes it impratical to be directly em-

mailto:jerryhts@gmail.com
mailto:yanchen99@fudan.edu.cn

2

ployed in the SW.
In this paper, we propose a new parallel multi-cluster

flip algorithm for a single GPU that combines the SW
with the HA4. In Section II, we briefly describe the SW
multi-cluster spin flip algorithm for the Ising and Potts
model and its correspondence with CCL & CCA. In Sec-
tion III we explain the HA4 algorithm in computer vision.
In Section IV, we describe the new cluster flip algorithm
on a single GPU. In Section V, we compare the perfor-
mance of the new cluster flip algorithm with a currently
prevalent CUDA package based on Komura equivalence.
Finally, we present a summary and discussion in Sec-
tion VI.

Algorithm 1 Modified distance operators for 32-bit bit-
masks
1: device function m start distance (pixels, tx)
2: return clz(∼ (pixels << (32 − tx)))
3: end function
4: device function m end distance (pixels, tx)
5: a = ffs(∼ (pixels >> tx))
6: if a then
7: return a
8: else
9: return 32 − tx

10: end if
11: end function

II. SWENDSEN–WANG CLUSTER
ALGORITHM, CONNECTED COMPONENT

LABELING AND ANALYSIS

The Hamiltonian of Ising and Potts models is given by

H = −J
∑
〈i,j〉

δSi,Sj
, Si = 1, 2, . . . , q (1)

and for q = 2 this corresponds to the Ising model. Here, J
is the coupling constant and Si is the Potts spin on the
lattice site i. The summation is taken over the near-
est neighbor pairs 〈i, j〉. Periodic boundary conditions
(PBC) are employed.

The Hamiltonian of the classical XY model, a contin-
uous spin model, is given by

H = −J
∑
〈i,j〉

si · sj = −J
∑
〈i,j〉

cos (θi − θj) (2)

where si is a planar unit vector with two real com-
ponents, (cos θi, sin θi) . For actual implementation, the
value of θi is discretized as 2πpi/q with pi = 1, 2, . . . , q.
This discretized model is referred to as the q -state clock
model. When q tends to infinity, the clock model be-
comes the classical XY model. To make a cluster flip
of vector spins, we can use the idea of embedded cluster
introduced by Wolff [4], and project vector spins to form
Ising spin clusters.

Assign each nearest neighbor pairs 〈i, j〉 a bond vari-
able nij , and one Monte Carlo step (MCS) of the spin-
update process of the SW cluster algorithm can be for-
mulated as three following steps [18][19]:

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 6 0 0 6

1 8 12 1 8 12

2 16 18 20 2 16 18 20

3 24 26 3 24 26

0 32 34 0 32 34

1 40 43 47 1 40 43 47

2 48 54 2 48 54

3 56 62 3 56 62

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 6 0 0 6

1 0 6 1 0 6

2 8 12 12 2 8 12 12

3 16 18 3 16 18

0 32 32 0 32 32

1 32 34 34 1 32 34 34

2 40 47 2 40 47

3 48 54 3 48 54

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0

1 0 6 1 0 0 0 0 0

2 8 12 12 2 0 0 0 0 0 0

3 16 18 3 0 0 0 0 0 0 0

0 0 32 0 0 0 0 0 0 0 0

1 32 34 34 1 0 0 0 0

2 40 47 2 0 0 0 0 0 0 0

3 48 54 3 0 0 0 0 0 0 0

(i) Initialization (ii) Strip labeling

(iii) Strip labeled (iv) Border merging

(v) Border merged (vi) Relabeling

FIG. 1. Example of the HA4 algorithm on an 8 × 8 image
divided into two strips of height 4. (Adapted from Fig.4
in Ref.[16]) Colored and white squares represent pixels with
data 1, and grey ones with data 0. Number written on a
square denotes its label. In (i), each segment start is ini-
tialized with its linear address. In (ii), local equivalences are
resolved for each strip. In (iv), we merge the equivalence trees
of the two strips. Finally, in (vi), each segment start finds the
root of its tree and shares it with the other threads of the
segment for relabeling.

1. Set nij = 0 if Si 6= Sj , or assign values nij = 1 and 0
with probability p and 1− p, respectively, if Si 6= Sj ,
where p = 1 − e−βJ , β = 1/kT the inverse reduced
temperature, k the Boltzmann constant and T the
temperature,

2. Identify clusters of spins that are connected by “ac-
tive” bonds (nij = 1),

3. Draw a random value (1, 2, . . . , q) with equal proba-
bility 1/q (including one-site clusters), and assign the
value to all spins in a cluster.

3

0 1 2 3 4 5 6 7

0 1 1 1 0 0 1 0

0 0 1 2 0 0 0 0

0 3 2 1 0 0 1 0

pixels

start_distance

end_distance

FIG. 2. Example of the original distance operators in the
HA4 on a 8-bit bitmask. (Adapted from Fig.2 in Ref.[16])

The second step: identifying clusters of spins con-
nected by active bonds, corresponds directly to CCL &
CCA. The CCL problem is an algorithmic application
of graph theory that considers a graph of nodes and as-
signs a unique label for each subset of connected vertices.
Many applications consider datasets with regular struc-
tures instead of arbitrary graphs. The connections be-
tween nodes are often defined by a function of the node
data rather than from a set of edges. These features
match perfectly with regular lattices and bonds.

Concerning a whole imaging project, CCL algorithms
are usually followed by post-processing which computes
some features such as the number of pixels in a compo-
nent, which natually fit in the calculation of total mag-
netization. Full labeling is required for human visualiza-
tion, which is homologous with spin value assignment.
The post-processing of CCL is called Connected Compo-
nent Analysis (CCA).

III. HARDWARE ACCELERATED
4-CONNECTED CONNECTED COMPONENT

ANALYSIS ALGORITHM

We will not go through all the CUDA terminologies
(kernel, device, thread, warp, block, grid, atomic oper-
ations, bank conflicts) and the technical details of the
HA4, please refer to Ref.[16] for a more comprehensive
explanation of the algorithm and its pesudocode. In gen-
eral, the HA4 algorithm consists of 4 steps: initialization,
strip labeling, border merging and relabeling, as illus-
trated in Fig.1. We use a similar structure with modifi-
cations in our algorithm. It is worth mentioning that the
HA4 deals with 4-connected binary image; that is, the
data of every pixel is either zero or one, and connectiv-
ity is defined between only and all pairs of ones that are
horizontal or vertical closest neighbors. In addition, the
width of the image is required to be a multiple of 32. We
name the following variables:

• BLOCK W,BLOCK H: The dimensions of a block
(We choose them to be 32 and 4, repectively, as sug-
gested in Ref.[16] to optimize performance.)

• bx, by: The block indices in the grid

• tx, ty: The thread indices in a block

• x, y: The column/row indices in the image

The image is devided into horizontal strips of rows,
and in each row, the HA4 identifies consecutive ones (ref-
ered to as a segment) and labels each segment start with
its linear address: adr = y × width + x. Notice that
x, y, adr all start from zero. Subsequently, the HA4 ver-
tically check for segments that can be merged by means
of label equivalence algorithm proposed in Ref.[12], first
within strips then between strips, and it is also done only
at segment starts. Eventually, each segment start dele-
gates the task of finding the equivalence tree’s root, which
is the final label, and propagates it to the rest of the seg-
ment. Component features are calculated as by-products
within the algorithm.

Essentially, the HA4 derives its efficiency from strip
devision and CUDA warp-level primitives [21]. The for-
mer minimizes the number of computationally expensive
atomic operations, which is the major drawback of pre-
vious parallel CCL algorithms (so-called State-of-the-art
algorithms), and the latter enables rapid data transporta-
tion within a warp, which avoids unnecessary memory
accesses and potential bank conflicts.

IV. A NEW PARALLEL MULTI-CLUSTER FLIP
ALGORITHM

In this section, we explain why the HA4 can not be
direcly employed in the SW algorithm, and demonstrate
the new parallel multi-cluster flip algorithm.

IV.1. Limitations of the HA4

Owing to the fact that the HA4 recognizes all and
only “1”s, one can attribute “1” neither to spins with
a certain spin number nor to spins to which bonds are
connected. The former practice neglects bonds between
spins of other spin numbers, and both practices ignore
the probability of consecutive “1”s belonging to different
clusters due to inactive bonds. Expressly, the local and
stochastic properties of bond formation make it arduous
to propose a general criterion regarding whether a spin
belongs to a cluster or not, which is unfortunately the
premise of the HA4.

Our new algorithm is capable of overcoming this diffi-
culty.

IV.2. Modified distance operators

The HA4 defines two distance operators:
start distance and end distance (see Fig.2), which
serve to obtain the distance of a pixel to the start or
end of its segment via bitwise operations. We propose

4

0 1 2 3 4 5 6 7 0

↓ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↓

-1 -1 1 1 1 1 1 -1 -1

1 0 1 1 1 0 0 1

0 1 0 1 2 3 0 0

2 1 4 3 2 1 1 1

Index

spin(S)

(PBC)

bond(image, I)

m_start_distance

(PBC bond)

A row of an 8-
spin-wide Ising

lattice

Distances don't
consider PBCm_end_distance

 bitmask (pixels) 10011101 (reversed order)

FIG. 3. Example of modified distance operators on a 8-bit bitmask derived from a row of a 8-spin-wide Ising lattice. (Style
adapted from Fig.1 in Ref.[20]) Notice that the leftmost spin with index 0 ends up in the lowest digit of the bitmask, resulting
in a reverse in order.

letting the activation status of horizontal bonds, rather
than spin numbers, play the role of image data, and
modify these distance operators correspondingly (see
Algo.1). The clz(Count Leading Zeros) intrinsic
returns the number of consecutive zeros starting from
the most significant bit and going down inside a 32-bit
register. The ffs(Find First Set) intrinsic returns
the position of the first bit set to one, starting from
the least significant bit and going up inside a 32-bit
register. The “∼” stands for bit inversion. The “<<”
and the “>>” are bit-shift operators. They move each
digit in a number’s binary representation left and right,
repectively.

We define the size of lattice to be n × n, and allo-
cate two-dimensional arrays Iy,x and Ly,x (x, y both start
from zero) to denote respectively the image data and la-
bel of the pixel (in our case, spin) in the yth row and
xth column, in accordance with Ref.[16]. For each spin
position (y, x), Iy,x stores its bond with its right-hand
side neighbor, except for the rightmost spins, where the
PBC bonds with the leftmost spins are stored instead (see
Fig.3). We individually judge whether a bond is active
or not by comparing a newly generated random number,
which distributes uniformly between zero and one, with
the probability p = 1−e−βJ . By doing so, inactive bonds
directly seperate different horizontal segments. Besides,
distance operators are altered, identifying the first “0”
following a segment of “1”s to be part of that segment.
In order to distinguish the concept of “segment” (succes-
sive “1”s) in the bitmask from connected spins, we allude
to the latter with “a fragment”. Just like the HA4, we
utilize the ballot sync instruction to obtain a 32-bit
bitmask where the ith bit is “1” if the ith bond is active,
and act distance operators upon bitmasks to avoid bank
conflicts.

The new distance operators possess useful properties.
For the start of a fragment start distance is always
equal to zero, and end distance is always equal to the
number of spins in the fragment. Moreover, unlike the
HA4 which ignores isolated “0” pixels, isolated spins are

treated as one-spin fragments.

IV.3. New merging strategy

Similar to the HA4, the lattice is separated into hor-
izontal strips of rows, and each one is attributed to a
block. In order to tackle lattice with arbitary size, we
use the grid-stride loop [22] to design flexible kernels.
This pattern also brings the benefit of thread use which
amortizes the cost of shared data initialization along with
threads creation and destruction.

In the initialization process we label every fragment
start with its linear address, including one-spin frag-
ments. Thenceforth, we vertically seek for fragments
between which bonds are connected so that they can be
merged. This process is only done at fragment starts. We
introduce another variable: V , which stands for vertical
bonds, and it is also a n× n array. However, in contrast
to horizontal bonds, we temporarily assume that p = 1,
which guarantees that all vertical bonds are active be-
tween spins with the same spin numbers. For each spin
position (y, x), Vy,x stores its bond with its upward side
neighbor, except for spins in the uppermost row, where
the PBC bonds with the bottommost spins are stored
instead (see Fig.4). V is precalculated in the initializa-
tion process. When trying to merge two vertically ad-
jacent fragments, we look in the horizontal overlap for
the horizontal index where at least one fragment is at its
fragment start, and check the bond at this horizontal in-
dex between these two fragments. If the bond turns out
active, it actually signifies that all spins in these two frag-
ments share the same spin number, and vice versa. We
now make allowances for p = 1−e−βJ . We define overlap
to be the number of spins in the horizontally intersecting
region, and it can be easily deduced that the probability
for that merger to happen is pmerge = 1− (1− p)overlap,
because it only requires at least one of the “overlapping”
bonds to be active. Fortunately, overlap can also be de-
rived from distance operators.

5

27 28 29 30 31 32

y -1 … ↓ ↓ ↑ ↑ ↑ ↑ …

? ? ? ?

? ? ? ?

y … ↑ ↑ ↑ ↑ ↑ ↑ …

92 93 94 95 96 97

27 29 29

92 95 95 0 1 0 1 2 0

1 0 1 1 1 0 0 1 2 0 0 1

1 1 0 1 1 0

2 1 3 2 1 1

0 1 1 1 1 3 2 1 1 2 1

27

92

29

92

29

95

29

95

Index

Index

vertical
bonds(V)

m_start_distance

m_end_distance

row index

row index

s_dist y -1

s_dist y

e_dist y -1

e_dist y

merge
attempt 4 V = 1, overlap = min(1, 2) = 1, if new_rand > (1-p)1 then merge.

merge
attempt 3

V = 1, overlap = min(3, 2) = 2, if new_rand > (1-p)2 then merge.

V = 0, different spin number, don't merge.

V = 1, overlap = min(1, 1) = 1, if new_rand > (1-p)1 then merge.

merge
attempt 1

merge
attempt 2

overlap = min(e_dist y -1, e_dist y)attempt when s_dist == 0

horizontal
bonds(I)

initialized
labels(L)

FIG. 4. Example of the new merging strategy on part of a 64 × 64 Ising lattice. The separation between spins is due to
BLOCK W = 32.

One needs to be cautious at the edge of blocks. In
the HA4, the strip labeling kernel passes two variables:
distancey−1 and distancey (see Fig.3 of Ref.[16]). As
the grid-stride loop moves the block towards the right-
hand side, these two variables pass the proper value of
start distance to the leftmost pixel of the new block.
They help the new block to locate the true segment starts
in the previous block, and label them in the new block
correctly. If distancey−1 and distancey of two rows are
both greater than zero, it reveals that these two segments
have already been merged, and therefore they don’t need
to be merged again. In our kernel, we keep these two vari-
ables for labeling, but we maintain the start distance
of the leftmost pixels in a block to be zero, so that

distance doesn’t interfere the calculation of overlap and
merger probability. After strip labeling is done, border
merging between strips are performed with similar fash-
ion to fragment merging.

An example of the new merging strategy is elucidated
in Fig.4. Thanks to this strategy, the CCL procedure is
now mathematically equivalent to the multi-spin cluster
finding in the SW, but tailored to the parallel implemen-
tation in the style of the HA4.

6

IV.4. PBC on arbitary size lattices

For horizontal PBC, one simply merges the two frag-
ments containing the leftmost and the rightmost spin if
there’s an active bond connecting the two spins. Vertical
PBC is included in the border merging process, where
the strip containing the uppermost row seeks to merge
with the bottommost strip.

The HA4 requires image width to be a multiple of 32
in order for warp primitives to work correctly. Thanks
to PBC, we no longer impose such restrictions on the
size of the lattice. For lattices with sizes that are not
multiples of 32, we simply find the smallest multiples of
32 greater than the sizes, and execute the algorithm on
the larger lattice. One only need to make sure that the
extra spins are not connected to the ones that are actu-
ally being considered, and adjust the PBC instructions
correspondingly. It can be deduced that such expansion
of the lattice doesn’t brings extra computational time, as
no extra mergers are executed.

102 103

linear size of lattice, n

10-2

10-1

100

sp
in

 fl
ip

 ti
m

e
(m

s/
M

C
S

)

New algo.
Komura equivalence

FIG. 5. Spin flip time comparison between the package in [13]
and ours. The spin flip time on 32 × 32 lattices, where the
grid-stride loop iterates for only once, best reflects the speed-
up of our algorithm.

IV.5. Spin flip as relabeling and iterative CCA

In the last step of the HA4, the final label of pixels
are propagated from segment starts via the shfl sync
instruction. We substitute the label being propagated
with the new spin number of that label. Thus the entire
CCL process has completed and it equates with one MCS
of the SW.

As is previously mentioned, the calculation of physical

quantity (magnetization, energy, etc.) is relevant to CCA
of clusters. However, as many iterations are required to
accomplish the SW, we don’t perform the CCA simuta-
neously with CCL. Instead we collect the information of
magnetization and energy at the beginning of the next
MCS, alongside with the bond initialization process.

V. EXPERIMENTAL EVALUATION

We wrote a CUDA C++ package and compare it to a
currently prevalent CUDA C++ package based on Ko-
mura equivalence algorithm [13]. We use square lattice
Ising models as test materials and the test environment
is a NVIDIA RTX 2060 graphic card (see Fig.5). The
performance on Potts and q-state XY models are basi-
cally identical as the algorithm treat these three models
with the same fashion.

It is well worth mentioning that the package in [13]
uses fixed block numbers, which cuts the computational
time compared to grid-stride loops, but limits the num-
ber of spins to be less than the maximum grid dimension
times the maximum block dimension. On the contrary,
our package gives up some computational speed in ex-
change for the capability to process arbitarily large lat-
tices. When the linear size of the lattice is no greater
than the size of a warp, which is 32, the grid-stride loop
doesn’t take effect, and thereby the speed-up of our al-
gorithm is clearly revealed.

VI. SUMMARY AND OUTLOOK

We presented a new algorithm that integrates the SW
with the HA4 to boost parallel Monte Carlo simulation
of 2D Ising and Potts model. Compared with a currently
prevalent CUDA C++ package based on Komura equiv-
alence, ours is dramatically faster in small lattices, and
is able to perform simulations on arbitarily large lattices.

Our algorithm can be easily extended to triangular
or hexagonal lattices, or square lattices with frustration,
whereas the extension to 3D cases might be rather non-
trivial [23].

AUTHOR CONTRIBUTIONS

Y. C. supervised the project. T.-S. H. conceived the
project, designed the algorithm, wrote the CUDA C++
package, conducted the performance tests and wrote the
paper.

CODE AVAILABILITY

The codes that support the plots within this paper and
other findings of this study are publicly available from the
corresponding author on reasonable request.

7

[1] M. Newman, G. Barkema, and I. Barkema, Monte Carlo
Methods in Statistical Physics (Clarendon Press, 1999).

[2] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller, Equation of state calcula-
tions by fast computing machines, J. Chem. Phys. 21,
1087 (1953).

[3] R. H. Swendsen and J.-S. Wang, Nonuniversal critical
dynamics in monte carlo simulations, Phys. Rev. Lett.
58, 86 (1987).

[4] Wolff and Ulli, Collective monte carlo updating for spin
systems, Phys. Rev. Lett. 62, 361 (1989).

[5] C. M. Fortuin and P. W. Kasteleyn, On the random-
cluster model: I. introduction and relation to other mod-
els, Physica 57, 536 (1972).

[6] Y. Cai and S. See, GPU Computing and Applications,
EBL-Schweitzer (Springer Singapore, 2014).

[7] S. Cook, CUDA Programming: A Developer’s Guide to
Parallel Computing with GPUs, 1st ed. (Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2012).

[8] V. Kindratenko, Numerical Computations with GPUs
(Springer International Publishing, 2014).

[9] Y. Komura and Y. Okabe, Gpu-based swendsen–wang
multi-cluster algorithm for the simulation of two-
dimensional classical spin systems, Comput. Phys. Com-
mun. 183, 1155 (2012).

[10] Y. Komura and Y. Okabe, Cuda programs for the gpu
computing of the swendsen–wang multi-cluster spin flip
algorithm: 2d and 3d ising, potts, and xy models, Com-
put. Phys. Commun. 185, 1038 (2014).

[11] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao,
The connected-component labeling problem: A review of
state-of-the-art algorithms, Pattern Recognition 70, 25
(2017).

[12] Y. Komura, Gpu-based cluster-labeling algorithm with-
out the use of conventional iteration: Application to the
swendsen–wang multi-cluster spin flip algorithm, Com-
put. Phys. Commun. 194, 54 (2015).

[13] Y. Komura and Y. Okabe, Improved cuda programs for
gpu computing of swendsen–wang multi-cluster spin flip
algorithm: 2d and 3d ising, potts, and xy models, Com-

put. Phys. Commun. 200, 400 (2016).
[14] L. Cabaret, L. Lacassagne, and D. Etiemble, Distanceless

label propagation: An efficient direct connected compo-
nent labeling algorithm for gpus, in 2017 Seventh Inter-
national Conference on Image Processing Theory, Tools
and Applications (IPTA) (2017) pp. 1–6.

[15] D. P. Playne and K. Hawick, A new algorithm for paral-
lel connected-component labelling on gpus, IEEE Trans-
actions on Parallel and Distributed Systems 29, 1217
(2018).

[16] A. Hennequin, L. Lacassagne, L. Cabaret, and Q. Me-
unier, A new direct connected component labeling and
analysis algorithms for gpus, in 2018 Conference on De-
sign and Architectures for Signal and Image Processing
(DASIP) (2018) pp. 76–81.

[17] F. Lemaitre, A. Hennequin, and L. Lacassagne, How to
speed connected component labeling up with simd rle al-
gorithms, in Proceedings of the 2020 Sixth Workshop on
Programming Models for SIMD/Vector Processing , WP-
MVP’20 (Association for Computing Machinery, New
York, NY, USA, 2020).

[18] W. Janke, Monte carlo simulations of spin systems, in
Computational Physics (Springer, 1996) pp. 10–43.

[19] D. P. Landau and K. Binder, A Guide to Monte Carlo
Simulations in Statistical Physics, 2nd ed. (Cambridge
University Press, 2005).

[20] F. Wende and T. Steinke, Swendsen-wang multi-cluster
algorithm for the 2d/3d ising model on xeon phi and gpu,
in SC ’13: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and
Analysis (2013) pp. 1–12.

[21] V. G. Yuan Lin, Using cuda warp-level primitives (2018).
[22] M. Harris, Cuda pro tip: Write flexible kernels with grid-

stride loops (2013).
[23] F. Lemaitre, A. Hennequin, and L. Lacassagne, Taming

voting algorithms on gpus for an efficient connected com-
ponent analysis algorithm, in ICASSP 2021 - 2021 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2021) pp. 7903–7907.

https://books.google.com/books?id=kQN6DwAAQBAJ
https://books.google.com/books?id=kQN6DwAAQBAJ
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.58.86
https://doi.org/10.1103/PhysRevLett.62.361
https://doi.org/10.1016/0031-8914(72)90045-6
https://books.google.com/books?id=JsePBQAAQBAJ
https://books.google.com/books?id=EX2LNkSqViUC
https://books.google.com/books?id=EX2LNkSqViUC
https://books.google.com/books?id=CbH0AwAAQBAJ
https://doi.org/10.1016/j.cpc.2012.01.017
https://doi.org/10.1016/j.cpc.2012.01.017
https://doi.org/10.1016/j.cpc.2013.10.029
https://doi.org/10.1016/j.cpc.2013.10.029
https://doi.org/https://doi.org/10.1016/j.patcog.2017.04.018
https://doi.org/https://doi.org/10.1016/j.patcog.2017.04.018
https://doi.org/https://doi.org/10.1016/j.cpc.2015.04.015
https://doi.org/https://doi.org/10.1016/j.cpc.2015.04.015
https://doi.org/https://doi.org/10.1016/j.cpc.2015.10.003
https://doi.org/https://doi.org/10.1016/j.cpc.2015.10.003
https://doi.org/10.1109/IPTA.2017.8310147
https://doi.org/10.1109/IPTA.2017.8310147
https://doi.org/10.1109/IPTA.2017.8310147
https://doi.org/10.1109/TPDS.2018.2799216
https://doi.org/10.1109/TPDS.2018.2799216
https://doi.org/10.1109/TPDS.2018.2799216
https://doi.org/10.1109/DASIP.2018.8596835
https://doi.org/10.1109/DASIP.2018.8596835
https://doi.org/10.1109/DASIP.2018.8596835
https://doi.org/10.1145/3380479.3380481
https://doi.org/10.1145/3380479.3380481
https://doi.org/10.1007/978-3-642-85238-1_3
https://doi.org/10.1017/CBO9780511614460
https://doi.org/10.1017/CBO9780511614460
https://doi.org/10.1145/2503210.2503254
https://doi.org/10.1145/2503210.2503254
https://doi.org/10.1145/2503210.2503254
https://developer.nvidia.com/blog/using-cuda-warp-level-primitives/
https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://developer.nvidia.com/blog/cuda-pro-tip-write-flexible-kernels-grid-stride-loops/
https://doi.org/10.1109/ICASSP39728.2021.9413653
https://doi.org/10.1109/ICASSP39728.2021.9413653
https://doi.org/10.1109/ICASSP39728.2021.9413653

	A New Parallel Algorithm for Monte Carlo Simulations of 2D Ising, Potts and XY Models
	Abstract
	Contents
	Introduction
	Swendsen–Wang cluster algorithm, Connected component labeling and analysis
	Hardware accelerated 4-connected Connected component analysis algorithm
	A new parallel multi-cluster flip algorithm
	Limitations of the HA4
	Modified distance operators
	New merging strategy
	PBC on arbitary size lattices
	Spin flip as relabeling and iterative CCA

	Experimental evaluation
	Summary and Outlook
	Author Contributions
	Code Availability
	References

