On the correct form of optical force density
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We follow the procedure proposed by Ref.[1] to derive the correct form of optical force density
for two-dimensional metamaterial systems. We use a mesoscopic lattice model as a numerically
accurate reference, and compare its results with those obtained from an macroscopic effective media
model using two different stress tensors. We show that only the Helmholtz stress tensor is able to

give the just answer.
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I. INTRODUCTION

When studying metamaterial, it is almost always as-
sumed that effective medium parameters provide suffi-
cient information to determine the light-matter interac-
tion. However, recent studies[2][3] have shown that when
calculating infernal force density, one needs to carefully
choose a specific stress tensor, or the effective medium
would be misleading.

The debate between the correctness of the Minkowski
or the Abraham tensor[4] has been on for nearly a cen-
tury, and in recent years we are finally approaching its
essence. Generally, when we go beyond the original
Maxwell equations and obtained derived quantities by
substituting one equation into another, one needs to be
cautious of the risk of losing information about the sys-
tem. In our case, we are able to show that the Maxwell
tensor has discarded the system’s electrostrictive prop-
erties, and calculations based on it results in a wrong
distribution of force density.
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II. COMSOL MODEL SETUP

We are now trying to show the difference between force
density in effective medium and its counterpart in the
real lattice structure, which will lead to some illuminat-
ing results. The model under consideration is a kind of
two-dimensional metamaterial consisting of an array of
dielectric cylinders made from uniform electric permit-
tivity and permeability (e, = 8, u, = 1).

The theory used in this work involves Multipole Scat-
tering Theory (MST), Effective Medium Theory (EMT)
and stress tensor derived from virtual force principle.
Firstly, we use MST to derive the dispersion relation in
the lattice structure which means the relation between
bloch vector and the frequency of the incident electro-
magnetic wave. The block vector is, indeed , the effec-
tive vector that we will use to derive the effective permit-
tivity. And then, we will use EMT to derive the effec-
tive permittivity, which turns out to be almost the same.
Thirdly, we will use COMSOL[5] to calculate the exact
field in the lattice structure as well as that of the effec-
tive medium. The incident waves include Ez polarization
and Hz polarization(or TM and TE wave equivalently).
Finally, we will use Maxwell tensor to calculate the force
exerted on every single cylinder inclusion in real lattice
structure and effective medium, and compare the result
to force calculated using Helmholtz tensor using effective
medium formalism.

The model now under consideration is a naive two
dimensional system made up of dielectric cylinders ar-
ranged in square lattice (See Fig. la) with the lattice
constant @ = 1078 m. The small circles represent di-
electric cylinders, with uniform electric permittivity and
permeability ((e, = 8, u, = 1)). The overall shape of the
cylinder array is a big circle, that is a big cylinder with
infinite length (See Fig. 1b).

III. MULTIPLE SCATTERING THEORY

MST is a systematic method to derive the dispersion
relation in the lattice structure. Its main idea is to take
into consideration the wave scattered by every scatterer
and thus figure out the eigenmode of the system by solv-
ing a secular equation determined by the boundary con-
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FIG. 1: Lattice structure

dition (which is the Mie coefficient in the system of di-
electric cylinders). Graf’s addition theorem also play an
important role in collecting all the scattered wave as it
enables us to write the complex amplitudes (b?) of scat-
tered waves from all the other cylinders (Q # P) as the
complex amplitude of scattered wave (b?) from cylinder
P. Moreover, the coefficient derived using Graf’s addition
theorem lead to the lattice sum, which is another crucial
quantity in the application of MST. We adopt the for-
malism and the notations of the a reference article[6].

Consider a SINGLE cylinder P first. The incident wave
on P can be written as
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with J representing Bessel Function, r_; = (r,6p) in
polar coordinates representing a vector originating from
scatter P and kg representing the wave vector in vacuum.
While the scattered wave is
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Then we consider the scattered waves from all the other
cylinders except P, which are
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Introduce the reciprocal vector
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And apply the Graff’s addition theorem to write the
outgoing scattered wave from cylinder Q of order m” in
terms of the sum of scattered wave from cylinder Q of
order m’ multiplied by a coefficient Gm/my
where
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apply bloch’s theorem and we will get
b, = qu”ei Kerr-Rg
K which shows up in the exponential term represents
the periodic change of scattered amplitude induced by
the space translational symmetry of the lattice field. The
approach is actually an analogy of method used in dealing

with electron’s wave function in metallic material.
And this leads directly to the lattice sums
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Then apply the boundary condition of cylinder P
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Consider the incident wave, scattered waves from @) #
P together, and we will get
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where
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and the Mie coefficient D,,

9J (‘75)‘ ) (E)Jm(¢)‘ )
ksJm (kg m k s kst
noksJIm (kgrs) ( ¢ o otsIm (ksTs) 56 .

(1)
kousJIm (ksrs) ( E’H*gi;,,((”

(1) 0Jm (¢)
o) Gr (2201
¢:k07‘s) |¢=ksrs
Drop the incident term a? ,, since we are now trying to
find the eigenmode, then we will get the secular equation
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All we need to do now is to compute the lattice sum
until it converges and solve the secular equation and the
outcome will the dispersion relationship

Keg~w

which is exactly what we want to describe the effective
medium




IV. EFFECTIVE MEDIUM THEORY

The E, polarization there is a well know result that
according to the Maxwell Garnett Relation, we can derive
that €. = €9 + peoxe, which means eor = €9+ p (€5 — 1)
in the lattice field. Here p represent the filling rate, which
is p = 0.283 in the current case. Thus we get e.g = 2.97,
which exactly matches with the result derived from MST.
While for H, polarization EMT gives e.g = 1.57.

V. MAXWELL TENSOR AND HELMHOLTZ
TENSOR

Maxwell tensor is a well-known result in classical elec-
trodynamics, since now we are considering the time av-
erage of the force, we can safely drop the term of in-
trinsic electromagnetic momentum in the volume under
consideration (which averages out at zero). Thus the
electromagnetic force exerted on a single cylinder could
be written as
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Furthermore, the procedure of line intergral actually
represent the opreation of average over the volume of
every single cylinder, and thus comes the “force density”.

VI. SIMULATION RESULTS

We utilizes a comercial software package COMSOL to
build the lattice model and the effective medium model
and calculate the field distributions throughout the lat-
tice using the wave optics module. Based on which, we
calculate the values of the non-trivial components of the
Maxwell and the Helmholtz tensors.

The two figures, Fig. 2 and Fig. 3, both consist of 6
subfigures. The first row is retrieved from the square
lattice model, where both tensors give the same results
as there’s only vacuum between cylindrals. This is con-
sidered to be the accurate numerical force density of the
lattice, and is used as a reference to be compared with the
rest of the subfigures. The model we use is composed of
approximately 2000 cylinders, and with each pixel of the

Lattice Maxwell Helmholtz
: f : \"{; ‘ 7
- o ) e o
= Wy L LIS Ll
: \ : AL ) \1\
Lattice Maxwell Helmholtz
- F - - §» I - ¥
. - > ! .
> - LI . -, . “a
= Wi o
L - L]

FIG. 2: E, polarization. Both tensors give the same
results.
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FIG. 3: H, polarization. The results obtained from the

Maxwell tensor deviates from the correct ones, whereas

the Helmholtz tensor is still able to provide appropriate
force density distributions.
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subfigure, we perform a numerical integration around a
cuboid column that contains the cylinder. The so called
“force density” here is actually the total force acting on
a cylinder, as it’s relatively a small piece in the effective
medium. The second and third column is obtained with
similar manner. The integration is done at the exact
same coordinates with the first column, only replacing
the model from a square lattice model to the effective
medium one.

It’s worth noticing that COMSOL doesn’t feature con-
ducting arrays of integrations, so this tedious process is
actually done by hand-written python numerical integra-
tion.

Additionally, we conducted a comparison between the
fine shape (or phase) of the electromagnetic field of the
two models by plotting the following term:

Norm [Elattice ] _ Norm [Eeffective ]
Max [Norm [Elastice ||  Max [Norm [Ejattice )]

The term describes the proportion of the F field at a
certain point to the maximum value of E in the lattice,
and reflects the local responses that is neglected by Keg .
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FIG. 4: Comparison of E field proportion between the
two models. It shows that the effective medium model
fails to grasp the local responses that exist in the lattice
model.

VII. SUMMARY AND OUTLOOK

In this work, we mainly followed a passage shown in
the reference. Our main focus is on the difference be-
tween the lattice field and its counterpart in the effective
medium. Using force density as a property to examine it,
we have shown that in the long-wave limit, the EMT does
well describe the behavior of TM wave, while it fails when
it comes to the TE wave. An important reason is that we

set p-=1, which means that there will be no dipole term
or higher term of response in the lattice field. When it
comes to the TE wave, the situation is totally different
(e, # 1) due to the higher order response.

When comparing the difference between the periodic-
ity of lattice structure and effective medium, we can see
that they are almost the same in the large scare while
there are bumps in a rather small scale. In fact, a simple
understanding of this effect is that the effective medium
gives the effective phase change required by the traveling
of wave and thus produce a field highly similar to that
of the real lattice structure. The information of the local
effect of lattice field, however, is lost in the formalism of
EMT, which is also why we failed to describe the force
density correctly using the field given by the effective
medium. And this matches with our previous explana-
tion of EMT’s failure in the context of the TE wave. We
shall also point out that our lattice structure is a try
to relate the macroscopic property with the microscopic
property. Thus we use cylinders of uniform permittivity
and permeability inclusion as an alternative to calculat-
ing the real field of molecules and atoms.
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